
# Retrofit: MAN B&W two stroke engine





### **Retrofit Products**



#### Retrofit = utilizing the advantage of the modern technology



#### Two stroke retrofit



Alpha Lub

Slide valves

PMI Auto tuning

Low load tuning

Propeller optimization

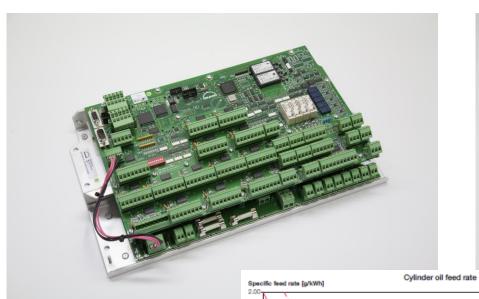
De-rating

Gas conversion ME-GI

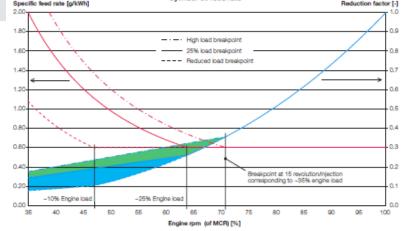
# **Slow steaming**



**Alpha lubricator** 

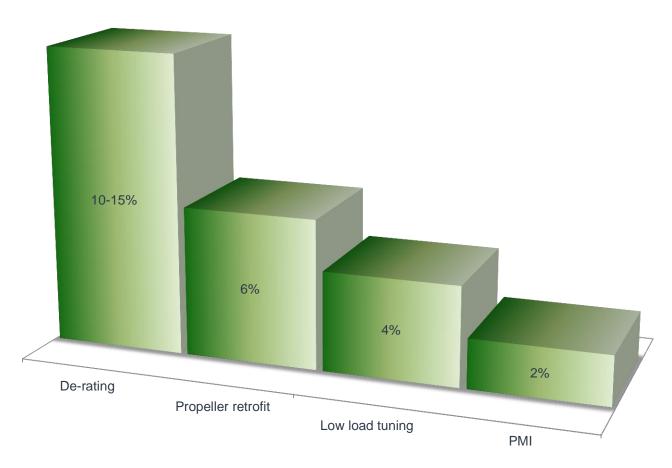




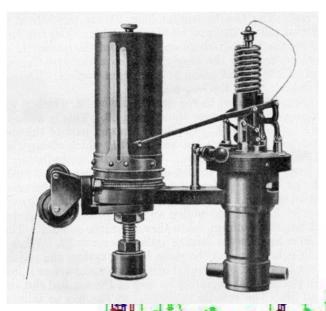

# Alpha Lub Upgrade










# **Fuel Savings**



# **PMI** Auto tuning

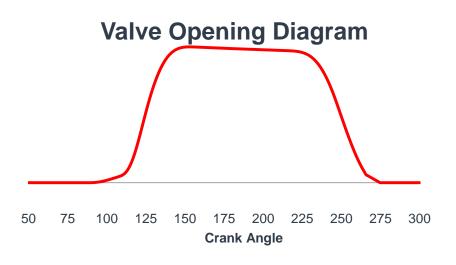






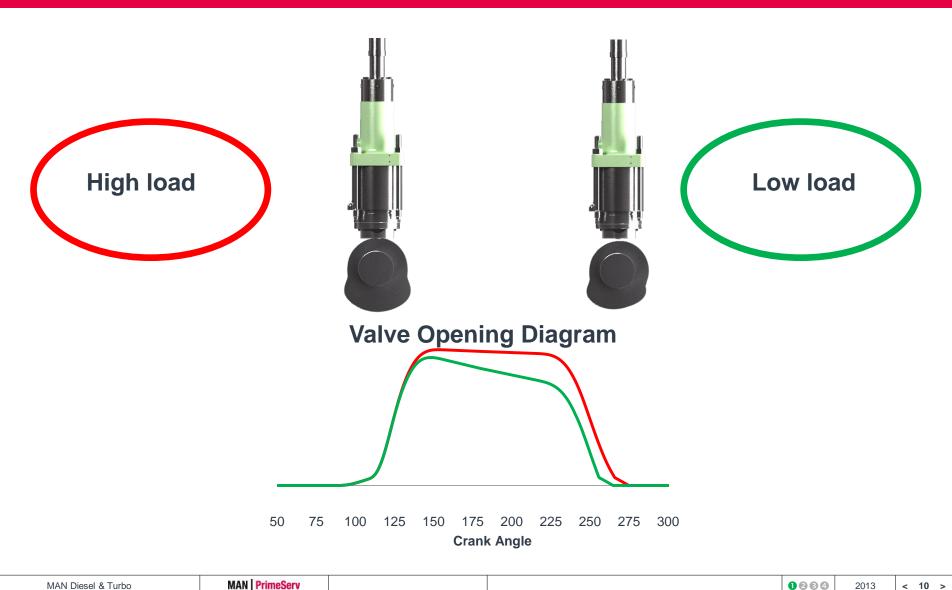


# Low load tuning




- TC cut out
- EGB
- VTA
- Variable exh valve timing










#### **Exhaust valve timing**





MAN PrimeServ 0284 MAN Diesel & Turbo 2013



< 11 >



EcoCam = Fexible exhaust valve timing

Fuel savings 5-6 g/kWh

- 1. Wave 500 50MC-C engines
- 2. Wave 1800 60MC-C engines



< 12 >



EcoCam = Fexible exhaust valve timing

Fuel savings 5-6 g/kWh

Give your MC a little E

# High eficiency Kappel propeller

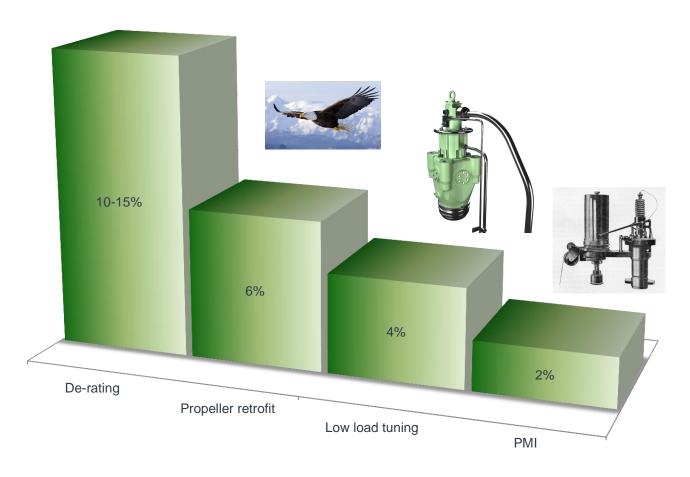




# High eficiency Kappel propeller












< 15 >

# **Fuel Savings**





< 16 >

# a lot of HOW DO WE SAVE FUEL?

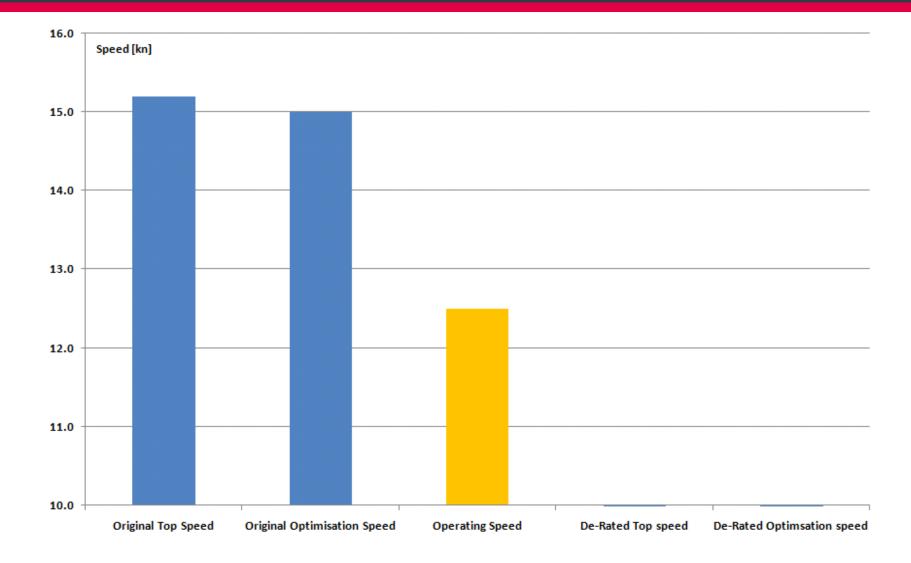




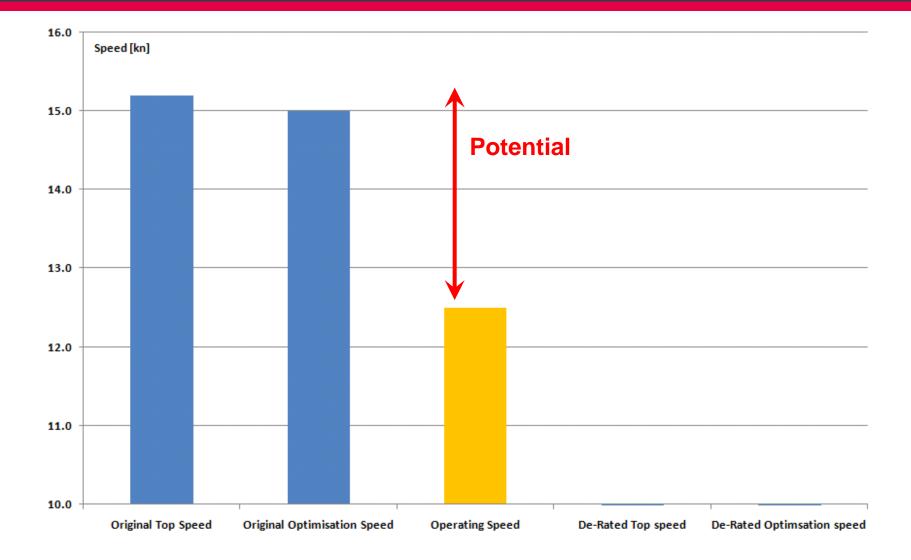
MAN Diesel & Turbo

MAN PrimeServ

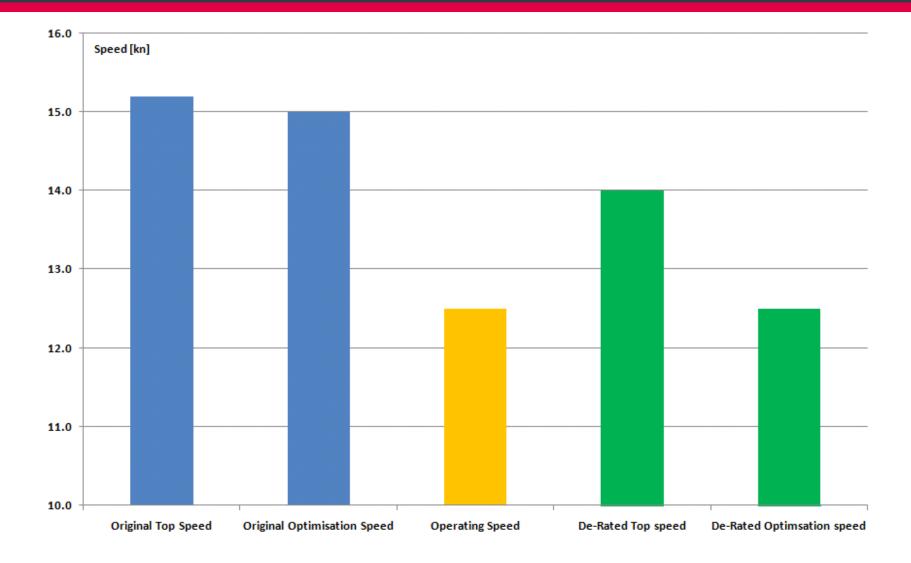
< 17 >




< 18 >

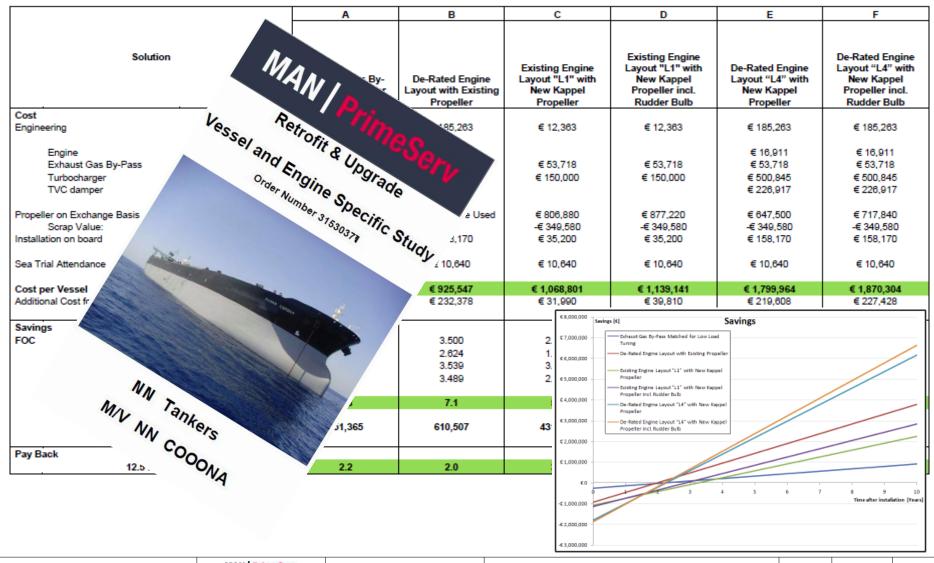

**Saving potential:** 10-15%

Cost estimate: 1-3 mill EUR







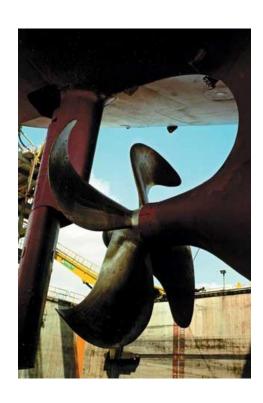


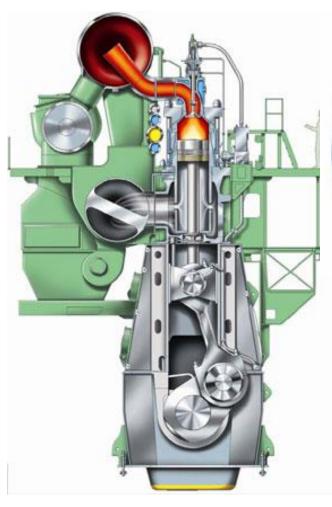


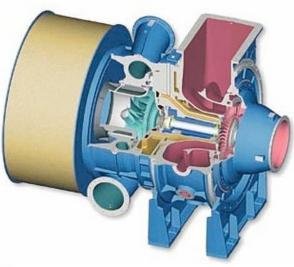

# Vessel and engine specific study






MAN PrimeServ

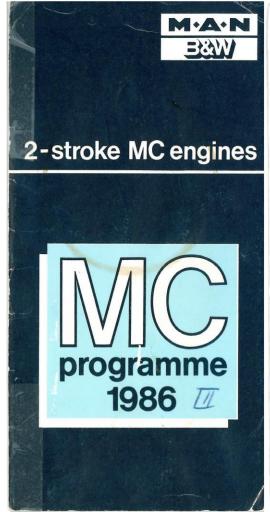

0284

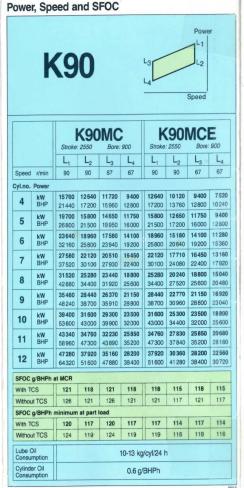

2013

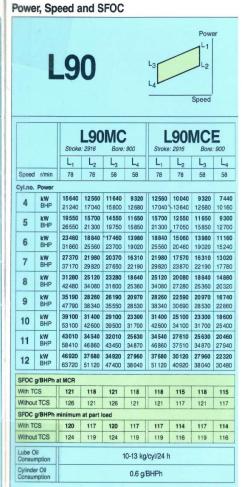
# **De-rating project**







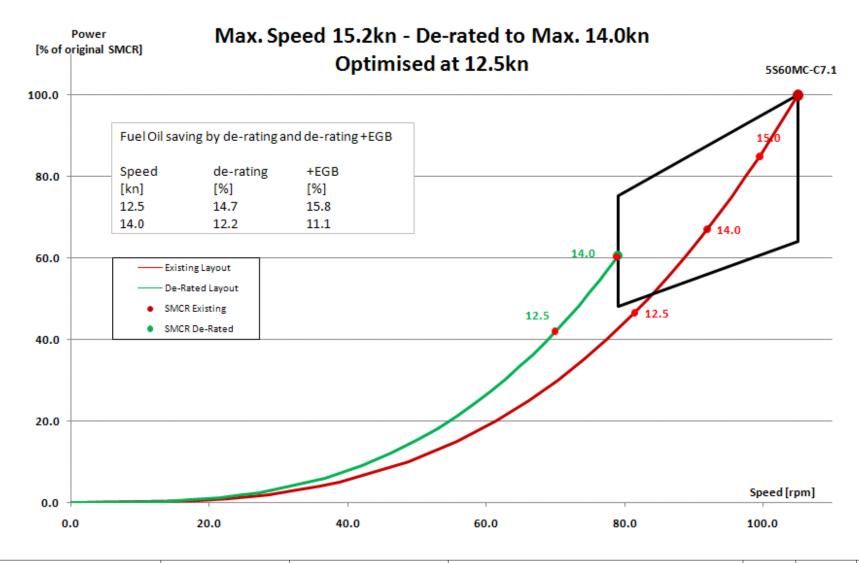




### De-rating of the engine



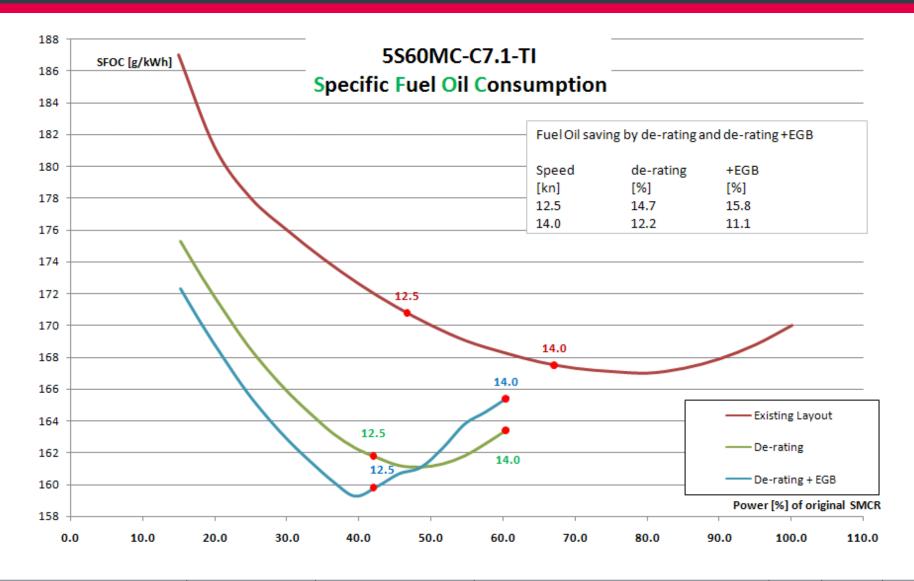







# Case study





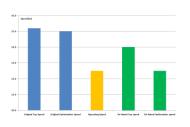



# **Case study**

#### Panamax Tanker






# Case study Panamax Tanker



< 27 >

#### Panamax tanker, 74K DWT

|                  | Existing setup | De-rated setup |
|------------------|----------------|----------------|
| Max speed (kn)   | 15,2           | 14,0           |
| Optimising speed | 15,0           | 12,5           |
| Operating speed  | 12,5           | 12,5           |
| SMCR (kW)        | 11.300         | 6.850          |
| RPM              | 105            | 79             |



Saving potential: 12-15%

Cost estimate: EUR 1,2 mill

Payback: 2,5 years

### **Alternative fuel**



Alpha Lub

Slide valves

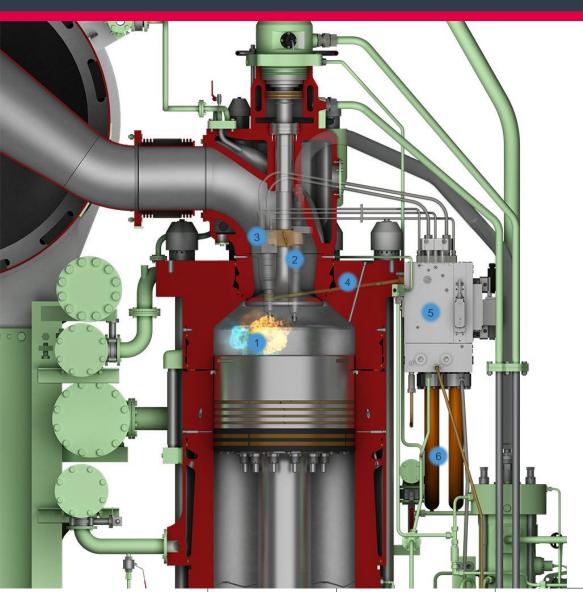
PMI Auto tuning

Low load tuning

Propeller optimization

De-rating

Gas conversion ME-GI


MAN | PrimeServ 0284 MAN Diesel & Turbo

< 28 >

# ME-GI

#### Combustion concept





From actual footage (colorized)

Yellow = pilot oil Blue = gas fuel

- Conventional slide fuel valve
- Gas fuel valve
- Gss distribution channel (yellow)
- Gas distributor block
- Gas chain link double-walled pipes

#### **ME-GI**





Mr. Diesel's Process (High Pressure Injection)

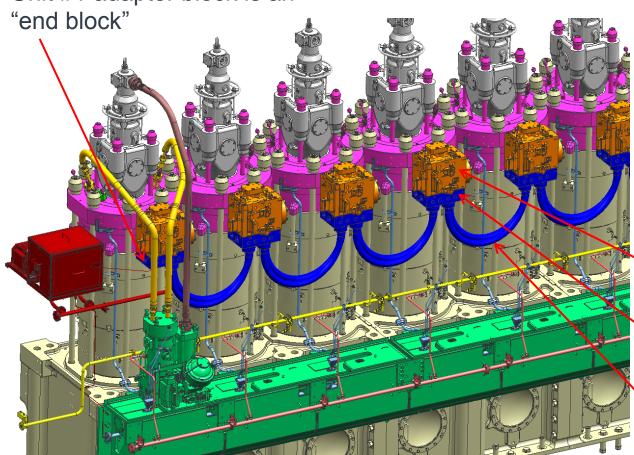
- Fuel in cylinder before gas
- Diesel process maintained
- Power remain the same
- Load response unchanged
- No pre-ignition / no knocking
- Insensitive to gas mixture
- Negligible methane slip
- High-pressure gas injection
- NO<sub>x</sub> reduction to Tier III level by EGR and / or SCR

ME can be retrofit to ME-GI.



# Mr. Otto's Process (Low pressure Injection)

- Gas in cylinder before fuel
- Otto process gas-air pre-mix
- Power reduction required due to
- Pre-ignition / knocking risk
- Load ramp needed
- Gas mixture important
- Methane slip significant
- Low-pressure gas injection
- Lower NO<sub>x</sub> due to *low efficiency*.
- Can only be retrofit if excess capacity is installed initially (20% larger engine, 20% greater fuel tanks, etc


**ME-GI** is a Two-stroke **Diesel** Engine

#### From ME to ME-GI

Gas block and pipes on engine



Unit #1 adaptor block is an



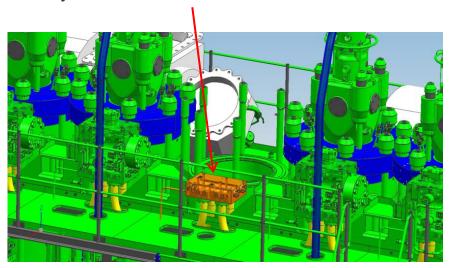
Gas supply line and vent line looped from unit to unit

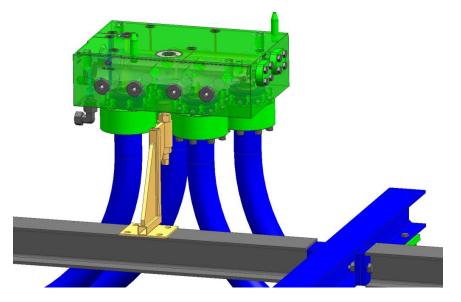
2013

Gas control block

Adaptor block

Gas pipes


### **ME-GI** Adaptor block



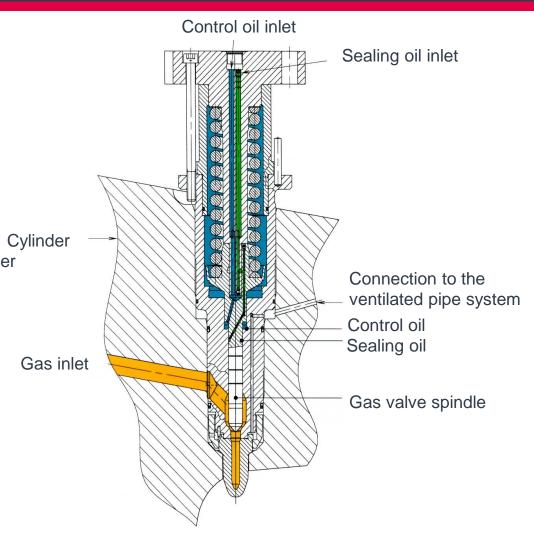

At cylinder cover lift, the gas control block is dismantled from the adaptor block by 4 bolts. The gas control block is removed with the cylinder cover, the adaptor block with all pipe connections stays in place.

> = No risk of faulty pipe assembly.

Adaptor block with pipes, remains the on engine at cylinder cover removal.






0284

# ME-GI









# Scope of Supply – from MC or ME to ME-GI engine retrofit



2013

#### ME / ME-C / MC / MC-C engines

Cylinder covers

Gas Control Block complete

Gas injector valves

Sealing oil unit

Control- and sealing oil pipes

Modification to the engine hydraulic system

Modifications for exhaust valves

Atomizers for fuel injector valves

Fuel oil high pressure pipes

Gas pipe arrangement on engines

Control and safety system (GI-ECS)

#### Additional for MC / MC-C engines

Hydraulic system

- Pump station
- Supply pipe
- Automatic fine filter unit

Hydraulic Cylinder Unit (HCU)

Fuel booster incl. actuator

Modifications for exhaust valves

ME-B Control system

Tacho system at flywheel and fore end

Alpha cylinder lubrication system

MAN Diesel & Turbo MAN PrimeServ □ □ □ □ □

# Out of Scope of Supply, ME-GI retrofit



#### ME / ME-C / MC / MC-C engines

Inert gas system for flushing the gas system

Double pipe system in the engine room

Block and bleed valve systems

Silencer for gas venting

Fuel Gas Supply System (FGSS)

MAN | PrimeServ

LNG tank systems

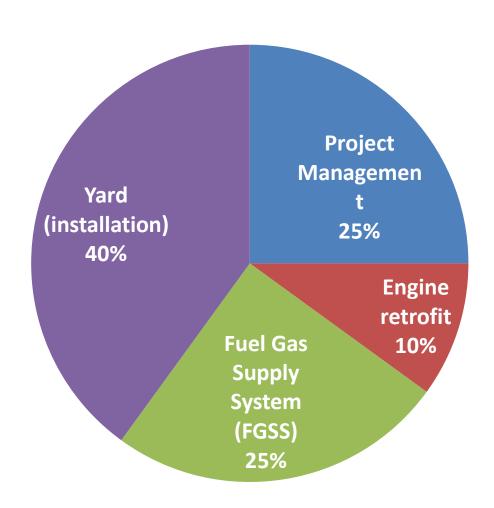
LNG bunkering systems

Gas detection system

Fire fighting systems

 $\bigcirc$   $\bigcirc$   $\bigcirc$ 

< 35 >


# Indicative budget prices for modification of Engines



| Poro | Engine type    | Indicative budget price [EUR] |              |  |  |  |  |  |
|------|----------------|-------------------------------|--------------|--|--|--|--|--|
| Bore | Engine type    | Components                    | Installation |  |  |  |  |  |
| 50   | 6S50ME / ME-C  | 825.000                       | 300.000      |  |  |  |  |  |
| 30   | 6S50MC / MC-C  | 1.800.000                     | 500.000      |  |  |  |  |  |
| 60   | 6S60ME / ME-C  | 830.000                       | 300.000      |  |  |  |  |  |
| 60   | 6S60MC / MC-C  | 1.900.000                     | 500.000      |  |  |  |  |  |
| 70   | 6S70ME / ME-C  | 870.000                       | 300.000      |  |  |  |  |  |
| 70   | 6S70MC / MC-C  | 1.960.000                     | 500.000      |  |  |  |  |  |
| 80   | 6K80ME / ME-C  | 1.120.000                     | 300.000      |  |  |  |  |  |
| 80   | 6K80MC / MC-C  | 1.630.000                     | 500.000      |  |  |  |  |  |
| 90   | 6S90ME / ME-C  | 1.060.000                     | 300.000      |  |  |  |  |  |
| 90   | 6S90MC / MC-C  | 1.750.000                     | 500.000      |  |  |  |  |  |
| 00   | 12K98ME / ME-C | 2.000.000                     | 600.000      |  |  |  |  |  |
| 98   | 12K98MC / MC-C | 3.600.000                     | 1.000.000    |  |  |  |  |  |

# **Example of cost split, ME to ME-GI retrofit**





#### **Project Management includes:**

Class & document handling, QHSE, HAZID/HAZOP, external consultants

#### Yard includes:

Installation, hull work, aux systems, piping/structural engineering, cabling, etc

2013

#### **ME-GI conversion Project**

Stage-Gate model



The eugineering Commitmen Gate Gate Gate Gate Customer Contrac **Define** Contracts and tools **Pre engineering** Execute Specify vessel(s) Evaluation of incoming bids • Pre engineering engine LNG tanks Pre engineering FGSS Work Breakdown Structure Boil Off Gas treatment Pre engineering installation Risk Analysis Fuel Gas Supply System HAZID workshop Project Execution Plan Price estimation Class involvement Project timeline Project organisation Contract negotiations structure Initial timeline Project description Class Approval in Principle Sub supplier selection Indicative budget price FGSS detailed spec Project Management tools Define main project lead ready Installation detailed spec Contracts ready to sign Project organisation ready Large Project Approval for stage 2 + 3 Tender submission Project plan up to contract signature Pre engineering contract

### **Stage 2 - Pre engineering**



#### Main topics for project specific pre engineering:

- Define hazardous areas onboard
- Gas venting policy (venting in emergency case)
- Fire detection / fighting systems
- **HC** detection systems
- Define engine modifications e.g. updated combustion chamber design, piping, cabling
- Define LNG tank system incl. position onboard
- Define Fuel Gas Supply System (FGSS) incl. position onboard
- Gas pipe routing on deck (personnel safety, heavy lifting, etc.)
- Gas pipe routing in engine room (personnel safety, heavy lifting, etc.)
- HAZID workshop
- Integration with existing alarm & monitoring system
- Safety valves in system

MAN PrimeServ MAN Diesel & Turbo 0284 2013 < 39 >

# Typical Timeframe

(based on LNG FGSS)



| D  |   |      | Task Name                           | Duration |     | 2014 |     |     |     |          |     | 2015 |     |            |              |  |
|----|---|------|-------------------------------------|----------|-----|------|-----|-----|-----|----------|-----|------|-----|------------|--------------|--|
|    | 0 | Mode |                                     |          | Nov | Jan  | Mar | May | Jul | Sep      | Nov | Jan  | Mar | May        | Jul          |  |
| 1  |   |      | ME-GI conversion main tasks         | 544 days |     | Ψ.   |     |     |     |          |     |      |     |            | <del>-</del> |  |
| 2  |   | 3    | Project start                       | 0 days   |     | •    | l   |     |     |          |     |      |     |            |              |  |
| 3  |   | 3    | Supplier agreement Engine Parts     | 0 days   |     | ∳`   | 1   |     |     |          |     |      |     |            |              |  |
| 4  |   | 3    | Supplier agreement FGSS             | 0 days   |     | ∳`   |     |     |     |          |     |      |     |            |              |  |
| 5  |   | =    | Supplier agreement Yard             | 0 days   |     | ∳`   |     |     |     |          |     |      |     |            |              |  |
| 6  |   | 3    | Kick-Off meeting                    | 3 days   |     | ì    |     |     |     |          |     |      |     |            |              |  |
| 7  |   | 3    | Basic Engineering FGSS              | 100 days |     |      |     |     |     |          |     |      |     |            |              |  |
| 8  |   | 3    | Basic Engineering Yard installation | 60 days  |     |      |     |     |     |          |     |      |     |            |              |  |
| 9  |   | =    | HAZOP                               | 5 days   |     |      |     | 15  |     |          |     |      |     |            |              |  |
| 10 |   | =    | Engineering engine components       | 210 days |     | ì    |     |     |     | <b>-</b> |     |      |     |            |              |  |
| 11 |   | =    | Detailed design FGSS                | 60 days  |     |      |     |     |     |          |     |      |     |            |              |  |
| 12 |   | 3    | Detailed design Yard installation   | 45 days  |     |      |     |     | 1   |          |     |      |     |            |              |  |
| 13 |   | 3    | FMEA                                | 60 days  |     |      |     |     |     | Î        |     |      |     |            |              |  |
| 14 |   | 3    | Engine parts manufacturing          | 180 days |     |      |     |     |     |          |     |      | -   |            |              |  |
| 15 |   | =    | FGSS manufacturing                  | 300 days |     |      |     |     |     |          |     |      |     | <b>—</b> 1 |              |  |
| 16 |   | =    | Yard prefabrication                 | 300 days |     |      |     |     |     |          |     |      |     | H          |              |  |
| 17 |   | =    | Vessel Arrival at Yard              | 0 days   |     |      |     |     |     |          |     |      |     | *          |              |  |
| 18 |   | 3    | Docking period conversion           | 60 days  |     |      |     |     |     |          |     |      |     |            |              |  |
| 19 |   | =    | Sea Trial                           | 1 day    |     |      |     |     |     |          |     |      |     |            | Ϋ́           |  |
| 20 |   | =    | Loading of Gas                      | 4 days   |     |      |     |     |     |          |     |      |     |            | *            |  |
| 21 |   | =    | Gas Trial                           | 7 days   |     |      |     |     |     |          |     |      |     |            | T            |  |
| 22 | 1 | =    | Project finish                      | 0 days   |     |      |     |     |     |          |     |      |     |            | <b>_</b>     |  |

# **Dual fuel gas engine – Tier II Reference list**



2013

Engine type ME-GI / ME-LGI

| No. o | of<br>S Opt. | No. of eng. | Engine       | Mk    | Gas | Ship Type           | Capacity Unit | Owner                | Builder    | Yard              | Hull no.                | Delivery<br>year |
|-------|--------------|-------------|--------------|-------|-----|---------------------|---------------|----------------------|------------|-------------------|-------------------------|------------------|
| 5     | 5            | 20          | 5 G 70 ME-0  | 9.2   | GI  |                     |               | Teekay LNG partners  | Hyundai    | DSME              | DW2407/08/16/17<br>#1+2 | 2014             |
| 2     | 3            | 5           | 8 L 70 ME-0  | 8.2   | GI  | Container           | 3100 Teu      | Totem Ocean Trailer  | Doosan     | NASSCO            | TOTE6495/96             | 2014             |
| 2     | 9            | 15          | 9 L 28/32 DF | Gens  | ets |                     |               |                      |            |                   |                         |                  |
| 2     | 2            | 4           | 7 S 90 ME-0  | 9.2   | GI  | Container           | 3600 Teu      | Matson               | Hyundai    | Aker Philadelphia | 029/ 030                | 2018             |
| 2     | 2            | 4           | 8 S 50 ME-E  | 3 9.3 | GI  | Container           | 1431 Teu      | Brodosplit           | Brodosplit | Brodosplit        |                         | 2015             |
| 2     |              | 4           | 7 G 70 ME-0  | 9.2   | GI  | LNG tankers         | 176300 CBM    | Knutsen OAS Shipping | Hyundai    | HHI-SBD           |                         | 2015             |
| 2     | 1            | 3           | 6 G 50 ME-E  | 3 9.3 | LGI | Methanol<br>Carrier | 50000 dwt     | Westfal-Larsen       | Hyundai    | HMD               |                         | 2015             |
| 2     | 1            | 3           | 6 G 50 ME-E  | 3 9.3 | LGI | Methanol<br>Carrier | 50000 dwt     | Marinvest            | Hyundai    | HMD               |                         | 2015             |
| 2     | 1            | 3           | 7 S 50 ME-E  | 3 9.3 | LGI | Methanol<br>Carrier | 50000 dwt     | MOL                  | Mitsui     | MNS               |                         | 2015             |

| Total Dual Fuel main engine | <b>46</b> engines |  |
|-----------------------------|-------------------|--|
| Total Dual Fuel Gensets     | 15 Gensets        |  |
| Total power main engine     | <b>924</b> MW     |  |

MAN Diesel & Turbo MAN PrimeServ 11/12/2013 RASA/LSP 0 2 3 4

#### Two stroke retrofit



2013

Alpha Lub

Slide valves

PMI Auto tuning

Low load tuning

Propeller optimization

De-rating

Gas conversion ME-GI

# Thank you for your attention



